Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Animal morphogenesis often involves significant shape changes of epithelial tissue sheets. Great progress has been made in understanding the underlying cellular driving forces and their coordination through biomechanical feedback loops. However, our quantitative understanding of how cell-level dynamics translate into large-scale morphogenetic flows remains limited. A key challenge is finding the relevant macroscopic variables (order parameters) that retain the essential information about cell-scale structure. To address this challenge, we combine symmetry arguments with a stochastic mean-field model that accounts for the relevant microscopic dynamics. Complementary to previous work on the passive fluid- and solidlike properties of tissue, we focus on the role of actively generated internal stresses. Centrally, we use the timescale separation between elastic relaxation and morphogenetic dynamics to describe tissue shape change in the quasistatic balance of forces within the tissue sheet. The resulting geometric structure—a triangulation in tension space dual to the polygonal cell tiling—proves ideal for developing a mean-field model. All parameters of the coarse-grained model are calculated from the underlying microscopic dynamics. Centrally, the model explains how driven by autonomous active cell rearrangements becomes self-limiting as previously observed in experiments and simulations. Additionally, the model quantitatively predicts tissue behavior when coupled with external fields, such as planar cell polarity and external forces. We show how such fields can sustain oriented active cell rearrangements and thus overcome the self-limited character of purely autonomous active plastic flow. These findings demonstrate how local self-organization and top-down genetic instruction together determine internally driven tissue dynamics. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available April 1, 2026
-
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulatingDrosophilaembryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Convergent extension of epithelial tissue is a key motif of animal morphogenesis. On a coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial cells adhere to each other and maintain the tissue layer under actively generated internal tension. To resolve this apparent paradox, we formulate a model in which tissue flow in the tension-dominated regime occurs through adiabatic remodeling of force balance in the network of adherens junctions. We propose that the slow dynamics within the manifold of force-balanced configurations is driven by positive feedback on myosin-generated cytoskeletal tension. Shifting force balance within a tension network causes active cell rearrangements (T1 transitions) resulting in net tissue deformation oriented by initial tension anisotropy. Strikingly, we find that the total extent of tissue deformation depends on the initial cellular packing order. T1s degrade this order so that tissue flow is self-limiting. We explain these findings by showing that coordination of T1s depends on coherence in local tension configurations, quantified by a geometric order parameter in tension space. Our model reproduces the salient tissue- and cell-scale features of germ band elongation duringDrosophilagastrulation, in particular the slowdown of tissue flow after approximately twofold elongation concomitant with a loss of order in tension configurations. This suggests local cell geometry contains morphogenetic information and yields experimentally testable predictions. Defining biologically controlled active tension dynamics on the manifold of force-balanced states may provide a general approach to the description of morphogenetic flow.more » « less
-
In recent years, non-reciprocally coupled systems have received growing attention. Previous work has shown that the interplay of non-reciprocal coupling and Goldstone modes can drive the emergence of temporal order such as traveling waves. We show that these phenomena are generically found in a broad class of pattern-forming systems, including mass-conserving reaction--diffusion systems and viscoelastic active gels. All these systems share a characteristic dispersion relation that acquires a non-zero imaginary part at the edge of the band of unstable modes and exhibit a regime of propagating structures (traveling wave bands or droplets). We show that models for these systems can be mapped to a common ``normal form'' that can be seen as a spatially extended generalization of the FitzHugh--Nagumo model, providing a unifying dynamical-systems perspective. We show that the minimal non-reciprocal Cahn--Hilliard (NRCH) equations exhibit a surprisingly rich set of behaviors, including interrupted coarsening of traveling waves without selection of a preferred wavelength and transversal undulations of wave fronts in two dimensions. We show that the emergence of traveling waves and their speed are precisely predicted from the local dispersion relation at interfaces far away from the homogeneous steady state. The traveling waves are therefore a consequence of spatially localized coalescence of hydrodynamic modes arising from mass conservation and translational invariance of displacement fields. Our work thus generalizes previously studied non-reciprocal phase transitions and identifies generic mechanisms for the emergence of dynamical patterns of conserved fields.more » « less
-
Orientational order, encoded in anisotropic fields, plays an important role during the development of an organism. A striking example of this is the freshwater polypHydra, where topological defects in the muscle fiber orientation have been shown to localize to key features of the body plan. This body plan is organized by morphogen concentration gradients, raising the question how muscle fiber orientation, morphogen gradients and body shape interact. Here, we introduce a minimal model that couples nematic orientational order to the gradient of a morphogen field. We show that on a planar surface, alignment to a radial concentration gradient can induce unbinding of topological defects, as observed during budding and tentacle formation inHydra, and stabilize aster/vortex-like defects, as observed at aHydra’s mouth. On curved surfaces mimicking the morphologies ofHydrain various stages of development—from spheroid to adult—our model reproduces the experimentally observed reorganization of orientational order. Our results suggest how gradient alignment and curvature effects may work together to control orientational order during development and lay the foundations for future modeling efforts that will include the tissue mechanics that drive shape deformations.more » « less
-
Abstract Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. With many fundamental properties of motile active matter now reasonably well understood and under control, the ground is prepared for the study of physical aspects and mechanisms of motion in complex environments, of the behavior of systems with new physical features like chirality, of the development of novel micromachines and microbots, of the emergent collective behavior and swarming of intelligent self-propelled particles, and of particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2024 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.more » « less
An official website of the United States government
